Thursday, March 3, 2016



Monitor Shows Carbon Monoxide Spikes to 40,000 Parts Per Billion over California on February 26 — What the Heck is Going On?

Hint: it’s a glitch.
On February 26, The Global Forecast System model recorded an (unconfirmed) intense and wide-ranging carbon monoxide (CO) spike over the US West Coast. A region stretching from British Columbia, through Washington and Oregon, and on over most of California experienced CO readings ranging from about 5,000 parts per billion over the mountains of Southwestern Canada to as high as 40,000 parts per billion over Southern California. Very high peak readings appear to have occurred from Northern California near Eureka and along a line south and eastward over much of Central California to an extreme peak zone just north and west of Los Angeles near Palmdale.
40000 ppbv
(Very large [unconfirmed] CO spike over Western North America near major geological features on February 26, 2016. Image source: Earth Nullschool.)
For reference, these (unconfirmed) readings in the Nullschool Monitor were between 25 and 200 times above typical background CO levels of about 200 parts per billion and up to twelve times higher than second highest peak readings over polluted regions of China during the same period.
Major Spike Appeared in Just 3 Hours Starting February 25th
Human-based carbon monoxide sources are not generally known to produce spike readings so high and so wide-ranging over such a short interval of time. It would typically take a considerable emission many days to build up under a stagnant air mass. And, to this point, we do have a couple of dome high pressure systems which have tended to form near the California region over recent days. That said, surface winds in the region at 5-15 mph over most areas could hardly be considered stagnant. In addition, the current spike appears over an interval of three hours in the Nullschool data — going from zero coverage to covering all of California and parts of Nevada, Oregon, Washington and BC over that single short interval. It’s a very brief period for such a large and wide-ranging peak reading to appear so soon. One that would require a rather extraordinary pulse of pollution to produce the readings indicated on February 25-26.
Wildfires could produce a longer-term emissions spike under stagnant air as well. However, the wildfires now reported for California are small and isolated. They have flared, off and on, under drought conditions, for weeks without resulting in any significant large fire outbreaks or related major pollution spikes. So it appears unlikely that they are the source of the current burst. Other events related to the ongoing California drought may have had an impact (apparently, burning of desiccated trees from California’s orchards is currently quite widespread due to ongoing drought conditions remaining in place since 2012). However, such instances would have to have been very sudden and wide-ranging to produce the spike we saw on the 25th and 26th.  Canadian wildfires — of which there have been very small and low intensity hotspot events recently (noteworthy due to their anomalous appearance out of season, if not for their intensity)  — were very far from peak readings in California and did not produce even a moderate level of emissions (undetectable from the visible MODIS sensor).
The Earthquake Precursor Hypothesis
A final suspect for this preliminary observation (which has gotten much hype in social media circles over recent days) is geological. As the apparent spike in the monitor occurs over large fault lines, volcanoes, and above other active geological features along the US and Canadian West, it appears that activity within these features might have produced a brief if intense burp of this gas. Sulfur dioxide (SO2) readings — another geological gas — were also elevated in the monitor, with peak readings again appearing in Southwestern California.
It’s worth noting that no major US or Canadian geological organization has yet made any report on this particularly large CO spike. However, a piece of scientific research in Nature Asia, by K. S. Jayaraman notes that major CO and SO2 spikes may be an indication that future earthquake activity is on the way. According to Nature this kind of intense CO spike occurred prior to a 7.6 magnitude earthquake that shook Gujara in 2001 killing 20,000 people:
Singh said that CO levels were taken by an instrument onboard NASA’s Terra satellite — launched in 2009 — circling the earth in a polar orbit at a height of 705 km. The instrument measures CO concentrations at different heights and also computes the total amount of the gas in a vertical column of air above the earth surface.
Analysis of the satellite data showed a large peak in CO concentrations during January 19 and 20 — a week before the main earthquake event. On January 19, the total CO in the vertical column was also higher than usual. After the 26 January earthquake the concentration of the gas dropped.
According to the scientists, CO gas is forced out of the earth due to the build up of stress prior to the earthquake “influencing the hydrological regime around the epicentre.”
But before we tilt too far into alarmism on this particular possibility, we should consider the fact that the above paper appears to have had no confirmation or further comment in the sciences at this time. So the predictive usefulness of large CO spikes prior to earthquakes remains quite uncertain. And, as noted above, no major geological information outlet has made any warning or comment on earthquake risk.
Furthermore, there’s been no observed spike in earthquake activity along any of the major fault lines over the past week according to USGS observations. Contrary to what some irresponsible analysts have been implying, earthquake activity in the California region over the past 7 days was well within the normal range. At 161 over the past week, this small number is not indicative of any abnormal activity near the various active fault lines. Each year, Southern California alone experiences 10,000 earthquakes, most of which are so small that people don’t even feel them.

No comments:

Post a Comment